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INTRODUCTION 

Astronauts on future extravehicular assignments in space, 

or on the surface of the moon and planets must be provided with 

microclimates compatible w5th life in, to say the least, hostile 

environments. Among the many functionswhich any space suit must 

fulfill are those of providing means for the regulation of 

temperature and humidity within physiological limits. The astro- 

naut may at one time be required to work strenuously in a lunar 

crater while exposed to intense solar radiation, and at another 

time he may be at rest in a complete solar shadow. Such extreme 

environmental conditions present great difficulties to design of 

effective self-contained thermoregulatory systems. 

It is the purpose of this paper to examine one aspect: that of 

the role of sweating in thermoregulation in space suits, and to 

discuss the ultimate disposition of any sweat secreted. 

Existing extravehicular space suits provide thermal regulation 

first by isolating the astronaut from his surroundings with 

various insulation techniques, and second, by removing metabolic 

heat either by cold water circulated through tubes directly in 

contact with skin, as in the Apollo suits, or by recirculation of 

cooled and treated oxygen or oxygen mixed with an inert gas, as 
\ 

in the Gemini suits. 
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One of the design criteria for the liquid cooling system for 

the EVA hardsuit is to minimize secretion of thermal sweat (F)*. 
With chilled water circulating through h network of tubing in con- 

tact with the skin, Webb and Annis (2,3) - -  have been able virtually 
to suppress sweating at work loads in excess of 900 k-cal/hr (3,570 

Btu/hr.). They have set 100 gm/hr (0.22 lbm/hr) as a desirable 

upper limit for total moisture l o s s ,  including the insensible 

transpiration and evaporative losses from the lungs. Suppression 

of sweat to these l o w  levels was recorded consistent with sub- 

jective acceptance of the cooling at the skin. 

Recently Fanger (4,z) - , while a visiting professor at Kansas 

State University developed regression equations correlating thermal 

comfort with environmental parameters and observed physiological 

responses. For thermal comfort, substantial sweat rates are pre- 

dicted at moderate work rates and above. 

These equations are: 

(1 -7 ) (kcal/m2hr) M - 
= 35.7 - 0.032 - 

tS 

sw 
- 

= 0.42 A (A (1 -7) ) - 50) (kcal/hr) 
D' ADu 

where : 
- 

= mean skin temperature, OC. 

M = metabolic heat production, kcal/hr, 

* 
Underlined numbers in parentheses refer to corresponding numbers 
in the list of references. 



-3- 

A, ,~  = surface area, m2. 
- 

= mean heat l o s s  by evaporation of sweat, 
kcal/hr (1 gm evaporated absorbs approxi- 
matePy 0.58 kcal) 

s" 

q = mechanical efficiency of human body (= 0 for 
level walking and rest) 

From equation ( Z ) ,  a man of average size walking on the level at 

the leisurely pace of 4 km/hr (2.5 mph) would sweat at a pre- 

dicted rate of about the 100 gm/hr (0.22 lbm/hr) level. At 5.6 

km/hr (3.5 mph) the predicted rate would be nearly 150 gm/hr (0.33 

lbm/hr). Highest sustained work loads, on the order of 500 kcal/ 

hr, C1,985 Btu/hr) would be expected to elicit about 300 gm/hr, 

(0.66 lbm/hr), consistent with thermal comfort. These predictions 

do not appear to be compatible with Webb's observations. 

Because of the fundamental implications of thel'no-sweat" 

concept in specifying thermoregulatory configuration of EVA suits, 

we have explored t he  question of sweat suppression in our laboratory 

in air and in a shower. 

Air Environment Studies (6) - 

Young, healthy, male volunteers (two) were exposed to 
'"\ environments ranging from 13' to 24OC (55" - 75'F) at three levels 

of exercise: sitting, level treadmill walking at 4.0 and 5.6 km/hr 

(2.5 and 3.5 mph). These tasks elicited metabolic rates of about 

100, 220 and 300,kcal/hr (397,873 and 1,190 Btu/hr) respectively. 
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Clothing was l i m i t e d  t o  a t h l e t i c  t runks ,  shoes and sucks.  

A t  t e n  minute i n t e r v a l s  measurements were taken of skin 

temperature (thermocouples a f f i x e d  t o  n ine  a r e a s ) ,  h e a r t  r a t e ,  

rectal  temperature ,  and s u b j e c t i v e  thermal comfort. Each h a l f  hour 

the s u b j e c t  w a s  t r a n s f e r r e d  t o  a s c a l e  and t o t a l  weight measured 

to  2 5 gms (+ - 0.01 l b m ) .  Metabolic r a t e  was determined twice 

each exposure by i n d i r e c t  ca lor imet ry .  Each exposure pe r iod  

l a s t e d  for  2 hours ,  un le s s  discomfort  of t h e  sub jec t  d i c t a t e d  a n  

e a r l i e r  a b o r t .  

Subjects w e r e  a b l e  t o  perform t h e  r e s t i n g  and 4.0 km/hr 

( 2 . 5  mph) walking t a s k s  comfbrtably a t  sweat r a t e s  less than LOO 

g m / h r  (0.221brn/hr). A t  our h igher  r a t e ,  which is not a n  excessive 

work load,  bo th  s u b j e c t s  exceeded t h e  100 gm (0.22 l b m )  l i m i t  by 

30 t o  SO g m / h r  (0.066 t o  0.11 lbm/hr). I t  was poss ib l e  t o  suppress  

sweating below t h e  100 gm/hr (0.22 lbm/hr) l e v e l  a t  t h e  h igher  

metabol ic  r a t e ,  b u t  t h e  s u b j e c t s  were uncomfortably cool: and 

--sometimes sh ive r ing  w a s  noted. Table 5: summarizes the  f ind ings .  

It  is  i n t e r e s t i n g  to note  t h a t  d a t a  of t h i s  s tudy  f e l l  wi th in  

reasonable  l i m i t s  of Fanger ’s  r eg res s ion  l i n e s  f o r  those exposures 

which t h e  subject repor ted  “comfortable”.  All b u t  two exposu::es 

where the  s u b j e c t  expressed discomfolrt f e l l  considerably below 

t h e  r eg res s ion  l i n e s .  I t  appears t h a t  Fanger’s  model might be 

u s e f u l  f o r  p r e d i c t i n g  t h e  amount of moisture  which the  l i f e  

support  system would have t o  remove a t  t h e  s e v e r a l  l e v e l s  of  
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Table I. . 

Sweating Responses (average of two subjects) at Three Levels 
Of Exercise and Several Levels of Atmospheric Temperatures 

c Sitting Walking 1 
Air Temp. Sweat 

gm/hr. 

12.8OC 

(75OF) L I 50 45 

20 

Comfort 
Vote 

cold 

cool- 
comf. 
comf. 

4.Okm/hr Comfort 5.6km/hr 
Sweat Vote Sweat 

I 95 
60 

75 comf . 14 0 I 
comf. 

~ 

Comfort 
Vote j 
cool 

cool- 
comf. 
comf .) 

metabolic heat production foreseen fo r  extra-vehicular activities. 

In Table I. , the data for rest (sitting) seem to display an 

inverse relationship between sweating and air temperature, The 

lowest sweat rates were at 24OC (75OF) when the subjects voted 

"comfortable", Sweating increased somewhat as air temperature 

dropped. This was consistent in the two subjects and perhaps 

reflects reaction to the cold: shivering, etc. It is again noted 

at 12  O c  (54OF) while walking at 4.0 km/hr (2.5 mph) where the 

subjects were quite dold. This fact perhaps indicates that there 

is optimal cooling at the skin: over-cooling may defeat the purpose, 

besides creating unnecessary discomfort of the subject. 
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Shower Studies (z) 
A drenching shower was created with twelve shower heads 

located on the four corners of the exercise area in such an arrange- 

ment as to provide minimum water impact upon impingement on the 

body surface. A 50  gpm (189 l/min) capacity pump provided the 

primary shower circulation. The bottom portion of the shower 

stall served as reservoir and held approximately 100 gallons 

(378 1) of water. The primary means of temperature control 

consisted ofasmall secondary water loop, powered by a separate pump, 

through a thermostatically controlled, 1500 watt (5,120 Btu/hr) 

hot water heater. For cooling purposes cold tap water was bled 

into the reservoir. The usual operation involved the addition 

. of slightly more cold water than that required to compensate for 

the heat gains in the system: thus, temperature regulation 

was obtained automatically from the heater. 

The volunteer subject was dressed in a thin waterproof garment 

to prevent suppression of sweating by direct contact with water ( E ) .  
The suit was clamped tightly around the subject's torso and limbs 

to provide better contact with the skin. The head was covered 

with hoods open at the bottom to allow for breathing. With this 

arrangement, essentially uniform cooling over the entire body 

could be achieved, serving the purpose af the experiment without 

the complexity of building a tubing network, 
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Exercise consisted of stepping on and off a 32 cfn (1.05 ft) high 

step at a rate determined by timed light flashes. Sweat Loss 

was determined by weighing the subjects before and after exercise 

in the dry, nude state. 

The subjects were tested to determine their insensible sweat 

rates under thermally neutral conditions. It wasassumed that 

they were losing moisture at this rate during the time between 

the actual weighings which was not exercise time. Thus the 

dressing time multiplied by the insensible sweat rate was sub- 

tracted from the subject's observed weight loss.  

Four unacclimatized males between 22 and 43 were studied at 

two exercise rates. "Light" activity consisted of approximately 

250 kcal/hr (992 Btu/hr) and "heavy" was about 3 3 3  kcal/hr (1,320 

Etu/hr) ; which, in fact, is not really heavy work. Figure 1 shows 

the sweat rate versus shower temperature €or subject "B" at the 

two exercise rates. The lowest point for these curves, and 

subsequent figures, represents essentially the coldest tolerable 

shower temperature for the subjects. At these temperatures, the 

subjects were cold, but managed to carry on for the period re- 

quired. Sweat rates for subject "B"  were suppressed to values 

approximating the desirable 100 gm/hr (0.22 lbm/hr) level: per- 

haps as high as 150 gm/hr (0.33 lbmhr) at the higher work load. 

As shown in Figure 2,however-, subject "D" sweated at the rate 

of 500 gm/hr (1.1 I b m / h r )  at the heavier work rate. This is 
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clearly well above the desirable level. It is interesting to note 

that he had the least tolerance to the cold water. The same subject 

"D" had one very high sweat rate of 480 grn/hr ( 1.06 lbm/hr) 

during "light" activity, The reason for this high value is 

thought to be partial acclimatization through concurrent partici- 

pation in hot room studies, We have not as yet tested this man 

in the air environment; it would be interesting to see if he 

does maintain the high sweat characteristics in air. 

Perhaps subject "D" has a physiologic makeup which wecludes 

sweat suppression by skin cooling. These results challenge the 

wisdom of accepting at this time, without further study,the assump- 

tion that sweating can be adequately suppressed under all conditions 

and in a l l  people. The possibility of thermal sweating should be 

accepted and provisions made to deal with it. 

Alternative Methods of Metabolic Heat Removal 

There is a possibility that more effective cooling and 

sweat reduction may be achieved by "zone cooling" the body instead 

of using a uniform coolant temperature. Although such a system 

would be more complicated because of the multi-zone control, the 

the exploration of its feasibility seems justified and it is under 

investigation currently. 

The previous results suggest a fundamental question. Would 

it be feasible to permit the astronaut to thermoregulate largely 
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by sweating? This would substantially reduce the complexity of the 

life support systems. Control would be effected by man's pre- 

cise thermal regulatory capacities. Wit? a passive moisture 

removal system, such as the one described below, no pumps or 

fans would be needed. Consequently power requirements would be 

also reduced. 

The astronaut would of course be under heat stress -- to a 
greater or lesser extent depending upon h i s  level of activity. 

With proper radiative insulation, the heatload would be essentially 

only his metabolic heat production. Experience in industry has 

shown t h a t  man can withstand heat stress eliciting sweat rates 

up to a liter an hour for eight hours (2).  This would be equivalent 

to working a t  a sustained rate of 500-600 kcal/hr (1,985 - 2,380 

Btu/inr.). Only for short durations need this level be reached or 

exceeded. An adequate supply of drinking water to make up water 

lost through sweating would be a requirement of this system. 

Cooling of&e skin by the evaporation of sweat could be 

achieved by porous sublimator plates ?laced strategically a short 

distance away frorn the skin sarface. The evaporated water vapor 

would condense on the inside surface of the sublimator plate 

while the ice formed within the plate wauld sublimate from the 

outer surface into the vacuum of space. Such sublimator plates 

are used currently in life support systems in space suits for re- 

jecting the heat.from the coolant. Properly designed and located, 
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such sublimator plates would be largely self-regulating. Additional 

control could be effected by the astronaut by regulating the openings 

between the sublimator plates and the vacuum of outer space. 

Refinements of the basic system could include a light under- 

garment for more uniform distribution of the moisture, and a 

manually operated water supply which could wet the undergarment 

to provide additional evagorative cooling without the need fo r  

excessive physiological strain to produce high rates of sweating. 

The following calculations indicate the feasibility of such 

a system. 

Consider the astronaut enclosed in a space suit where the 

conditions are specified as follows: 

1. A skin area of A = 1.25m2 (13.44ft2) is exposed to sub- 

limator plates located parallel to the skin surface at a mean 

distance of 1 = 2 cm (0.79 in = 0.0656 ft.). 

2. The mean skin temperature is 35OC (95'F) and the mean 

sublimator plate inside surface tempeyature is 0°C.(320F). 

3 ,  The space suit atmosphere is pure 0 at 1/3 atmospheres 
2 

pressure with its temperature varying linearly from the skin to 

the sublimator plate. 

The problem can be considered as simple diffusion of one 

component, water vapar, in a stagnant gas, oxygen; p l u s  conduction 

of heat acrr0s.s the stagnant gas layer. 
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Assuming that both components behave as ideal gases, the 

molal mass flux is given by Stefan's equation (a): 

'H,P, skin - 'H20, plate - = -  NH20 DP 

'02 I m  
A - RT1 

where : 

NH20 
A 

D 

P 

R 

T 

1 

molal flow rate 

skin area exposed 

mass diffusivity 

total pressure 

gas constant 

zbsolute temperature 

mass transport distance 

partial pressure of water vapor 

logarithmic mean partial pressure of oxygen. 

The mass diffusivity can be estimated from Gilliland equation 

(32) to be: 

I) = 3.82 ft2/hr = 0,986 cm2/sec 

The values for the other parameters are: 

A = 1.25 x 104c~~2 

P = 0 , 3 3 3 3  atm. 

R = 82.05 cm3atm/g mole OK 
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T = 290.5OK 

l = 2 c m  

= 0.0555 atm 'H20, skin 

'H 0, plate = 0.0060 atm 
2 

= (0.3273 - 0.2778)/1n (0.3273/0.2778) = 0.300 atm ,m 

Substituting these values into equation (3) yields 

= 1.422 x g mole/sec NH2 0 

The latent heat of vaporization at the skin teinperature of 

35OC is 
h = 10.41. kcal/g mole 
fg 

Therefore, the heat removed from the skin surface by evapo- 

rat ion becomes 

- h = 0.148 kcal/sec = 533kcal/hr = 2,12OBtu/hr Qe - N ~ , ~  fg 

There is also heat conduction across the essentially stagnant 

gas layer which can be calculated from Fourier's equation 

Since the gas is almost all oxygen, let 

k = 0.0148 Btu/hr ft°F = 2.2 x lO-*kcal/hr cm°C 

Thus, 

= 48.2 kcal/hr = 192 Btu/hr Qc 
The total heat transferred is 
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Q = Q, + Q = 581 kcal/hr = 2,310 Btu/hr C 

which is quite adequate for the maximum sustained metabolic 

heat loads although it is below the expected maximum short 

duration metabolic rates. Since such transient heat loads cannot 

and should not be removed instantaneously, the dificiency can be 

made up over an extended period of time after the heavy exercise 

has occurred, The thermal regulation would be very similar to 

that experienced by people working in a dry but very hot climate. 

The skin to plate distance could also be reduced somewhat from the 

assumed 2 cm. Therefore, the scheme seems quite feasible from the 

standpoint of heat removal. 

Conclusions 

In this paper, the problem of metabolic heat removal in 

EVA space suits has been examined with special emphasis on the 

regulation of sweat rates. It has been found that with some 

people sweat secretion could not be reduced to a minimal level of 

about  100 gm/hr (0.22 lbm/hr) with uniform direct contact cooling 

of the skin. These results suggest that some form of sweat removal 

mechanism may have to be incorporated in all space suits unless 

1. It can be determined by extensive physiological tests 

that the astron-ut is not the "sweating" type; or 

2 .  Alternative methods of metabolic heat removal can be found. 
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Two possibilities have been discussed in the paper. The first 

was the suppression of sweat by %one cooling". The second was 

the completely opposite concept of utilizing the astronaut's own 

thermoregulatory system and provide cooling by the evaporation 

of sweat, employing porous sublimator plates for the removal 

of moisture, 
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List of Fiqures 

Figure 1, Comparison of sweat rates during "light" (open 

circles) and "heavy" (solid circles) activities of 

subject B. 

Figure 2. Variation of Sweat rates with water temperature 

during "heavy" activity. 
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